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Sensitivity at the degenerate points of energy levels in a quantum system
with nonintegrable perturbation
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The behavior of quantum states and observables of a quasi-integrable quantum system is studied. Sensitivity
of the quantum states and nonperiodicity of the average value of observables at the degenerate points of energy
levels are observed. The behavior demonstrates the quantum properties corresponding to the classical resonant
tori with rational frequency ratio, where the global structure is easily destroyed by a small perturbation. Our
result is helpful for further understanding the avoided crossing in hard chaotic quantum systems.
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I. INTRODUCTION

In the study of quantum chaos, the behavior relevan
energy levels, e.g., the different types of unfolded ene
spectra, the spectrum rigidity, etc., is usually considered
the criterion for regular and chaotic motion@1–3,8#. More-
over, the avoided crossing of energy levels is widely
cepted as a signature of quantum chaotic motion, espec
for hard chaotic systems. In these cases, if a certain pa
eter of the Hamiltonian is adjusted, the energy levels m
vary accordingly; the most miraculous phenomenon is th
with changing parameter, two energy levels may dr
nearer, then repel each other, and separate further, as if
exists a hidden repelling force preventing the degener
from occurring.

It is well known that, quasi-integrable~i.e., soft chaotic!
systems behave intermediately between integrable and
tally chaotic ones; a transition from regular to chaotic mot
can be observed in these systems. Thus, investigation o
transition process in such systems would be helpful for u
understand the avoided crossing of energy levels in hard
otic systems.

The transition process can be described as the follow
For an originally integrable Hamiltonian system, degene
cies of energy levels can easily take place due to the s
metry of the system; as one of the parameters change, di
ent energy levels may intersect with each other, and
intersecting points are just the degeneracy points of ene
levels. If a nonintegrable perturbation is added to the syst
the system symmetry is partly destroyed; as a result, som
the degeneracy points are split, and the behavior simila
that of avoided crossing can be observed. As the perturba
strength increases further, the symmetry may be totally
stroyed and the degeneracy of energy levels becomes
which is rightfully the avoided crossing case.

From the above descriptions, one can infer that the beh
ior of energy levels at degeneracy points is more crucial t
those at the other part of the energy spectra. We nee
point out that these degeneracy points are usually relate
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the sensitivity of the system. That is, the properties of
system are more sensitive to external perturbation at th
points. It can be seen, with semiclassical analysis, that
sensitivity behavior corresponds to the destruction of cla
cal resonant tori.

Recently Xuet al. @3,4# has pointed out that overlaps o
many avoided crossings at one point can be seen as a s
ture of quantum chaotic motion, which is the quantum cou
terpart of classical resonance overlaps. This shows that
behavior of a quantum system at degeneracy points as
as avoided crossings can still be an important topic for f
ther study. Moreover, the phenomena similar to avoid
crossing can also be observed in the eigenvalue problem
different wave systems that are beyond the scope of quan
mechanics@6,5,7#. Better understanding of the quantum
mechanical case is also helpful for elucidating the comm
character in these systems@8–20#.

The present paper is organized as follows. In Sec. II
propose a model system with the unperturbed Hamilton
displaying energy degeneracies; it is shown that the deg
eracy points correspond to the classical resonance tori,
are sensitive to perturbation. As a comparison, in Sec. III,
trajectories of observables and their power spectra near
degeneracy points are calculated. Section IV is a discuss
the nonlinear effect in the observables is pointed out.

II. SENSITIVITY AT DEGENERATE POINTS

To investigate the behavior at the degeneracy points
energy levels, we first need to adopt an integrable mode
which the intersection of different energy levels can be o
served explicitly. The unperturbed integrable Hamiltoni
we consider is

H0~m!5H01mU5 1
2 ~p1

21x1
21p2

21x2
2!2mx1x2 , ~1!

whereH05 1
2 (p1

21p2
21x1

21x2
2), is the Hamiltonian of a two-

dimensional~2D! harmonic oscillator,U52x1x2, andm is
an adjustable parameter. Here we suppose that the ma
oscillatorm, the angular frequencyv, and the Planck’s con-
©2001 The American Physical Society10-1
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stant \ are equal, i.e.,m5v5\51. With this choice of
units, the classical and quantum-mechanical quantities
have at the same scale and can be easily compared. Int
bility of the model can be proved as follows. By taking

j15
1

A2
~x11x2!, j25

1

A2
~x12x2!, ~2!

and

p15
1

A2
~p11p2!, p25

1

A2
~p12p2!, ~3!

the above relation can be seen as a canonical transform
j1 , j2 ; p1 , p2 represents the new variables of coordina
and momenta. Hence we have@j1 ,p1#5@j2 ,p2#5 i (\51)
and the HamiltonianH0(m) is transformed into

H0~m!5 1
2 @p1

21~12m!j1
2#1 1

2 @p2
21~11m!j2

2#. ~4!

It can be easily seen that this is another 2D harmonic os
lator, which is surely an integrable system. The expressio
energy levels can be obtained analytically:

Em,n5~m1 1
2 !A12m1~n1 1

2 !A11m,

m,n50,1,2, . . . . ~5!

To demonstrate the sensitivity, we introduce a nonin
grable perturbationlV:

lV5l~x1
2x22 1

3 x2
3!, ~6!

which is the external perturbation of He´non-Heiles oscillator.
The strength of perturbation is determined by parametel,
hence the total Hamiltonian has the following form:

H5H0~m!1lV5H01mU1lV. ~7!

To perform the numerical calculation, the representat
of a 2D harmonic oscillator is adopted. The Hilbert space
spanned by the eigenstates of the HamiltonianH05 1

2 (p1
2

1p2
21x1

21x2
2), which are

$um,n&5um& ^ un&;m,n50,1,2 . . .%. ~8!

um,n&,um& and un& are the eigenstates satisfying the follow
ing equations:

H0um,n&5 1
2 ~p1

21x1
21p2

21x2
2!um,n&5~m1n11!um,n&;

~9!

1
2 ~p1

21x1
2!um&5~m1 1

2 !um&; ~10!

1
2 ~p2

21x2
2!un&5~n1 1

2 !un&. ~11!

The matrix elements of HamiltonianH5H0(m)1lV5H0

1mU1lV can be calculated as the following:
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FIG. 1. ~a! Energy levels of HamiltonianH5H0(m)1lV, vary-
ing with m for l50. The crossings of energy levels can be o
served atm50.6. ~For the present and following figures, the uni
of energy, length, and momentum are scaled by the relationm5v
5\51.! ~b! Energy levels varying withm for l50.02, splitting of
the degenerate energy levels can be seen atm50.6. ~c! Amplified
aspect of~b! around the avoided crossing point atm50.6, the en-
ergy levels are labeled byE7 , E8, andE9 according to their posi-
tions in the spectrum.
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FIG. 2. Different structures of Poincare´ sec-
tion before and after the perturbationlV is added
to the system. Discrete points in~a! represent the
periodic motion while the connected points in~b!
represent the quasiperiodic motion.
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Hk,l ;m,n5^k,l uHum,n&

5~m1n11!dk,md l .n1m^k,l uUum,n&

1l^k,l uVum,n&. ~12!

With the recursive formula of operators, the explicit form
the last two terms of Eq.~12! can be obtained easily. Th
numerical calculation is performed in a truncated subsp
with 10315 bases, with which the result is accurate enou
so long asl is small~i.e.,l,0.1).~Different numbers of the
bases are also tested to convince of the convergence.!

Figure 1 shows the variation of energy levels of the s
tem withm for l50 and 0.02, respectively. It is noticed th
in the case ofl50, most of the levels are degenerate a
intersect, respectively, with each other at the pointm50.6;
however, whenl50.02, due to the addition of nonintegrab
perturbationlV, the degenerate energy levels are split a
bear the property similar to avoided crossing. Compared w
the split points, the remaining parts of the energy spectr
are relatively insensitive to the nonintegrable perturbatio

Concerning the classical behavior of the system descr
by Eq. ~4!, one can see that the pointm50.6 corresponds to
a resonant case where the ratio of classical frequencie
two independent oscillators is

A12m

A11m
5

1
2

.

This indicates that the motion of the system near the p
m50.6 is highly unstable and sensitive to small external p
turbations according to the Poincare´-Birkhoff theorem.

Poincare´ section can be applied to show this classical
havior clearly. We have randomly chosen ten groups of v
ues of (x1,x2 ;p1 ,p2) satisfying the restrictionH5H0(m)

1lV5 5
2 A12m1 3

2 A11m as the initial conditions~The val-
ues of parameters arem50.6, l50.! The restriction corre-
sponds to the eighth energy level of the quantized syst
Figures 2~a! and 2~b! show the Poincare´ sections in phase
planej12p1, before and after the perturbationlV is added
to the system, respectively. Substantial difference can
seen between the two cases. Discrete points in Fig. 2~a! dem-
onstrate periodic motion in contrast to the quasiperiodic m
tion in Fig. 2~b!.
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One may ask that, what is the corresponding quant
behavior? To show this, we compute the scalar produc
eigenstates of perturbed and unperturbed systems. LetuN&
denote theNth eigenstate of HamiltonianH0, and uN,m,l&
of the perturbed HamiltonianH5H0(m)1lV5H01mU
1lV. The modulus of the product,u^NuN,m,l&u2 can be
seen as a description of similarity between the statesuN& and
uN,m,l&. Figure 3 shows this withN58, corresponding to
the eighth energy level in Fig. 1~a! counted from the lowes
one; m varies continuously between 0 and 0.75. The so
line indicatesl50, the dashed line,l50.02. It can be seen
that, for l50, u^NuN,m,l&u2 varies smoothly, while an ex
plicit gap appears aroundm50.6 as a finite perturbationlV
is added. Though the corresponding eigenvalue bears
small shift around the pointm50.6, the quantum state i
changed dramatically as the perturbation is added.

In Fig. 4 we plot the sectional quantum phase space,
squared moduli of expansion coefficient of the stateuN
58,m,l50.02& by coherent states@1#, that is, u^x̄1 ,p̄1 ,x̄2

50,p̄252uN,m,l&2. The definition ofux̄1 ,p̄1& is

ux̄1 ,p̄1&5e[ 2(1/2)u( x̄11 i p̄1 /A2)u](
n

~~ x̄11 i p̄1!/A2!n

An!
un&,

FIG. 3. u^NuN,m,l&u2 as a function ofm, for N58, gives the
solid line forl50, and the dashed line forl50.02. An explicit gap
can be seen aroundm50.6 as the perturbationlV is added.
0-3



the

ar-

YINGXIN JIN AND KAIFEN HE PHYSICAL REVIEW E 63 066210
FIG. 4. Sectional quantum phase space of
state uN58,m,l50.02&, the visual form of the
section loses and then recovers its original ch
acter asm crosses the degenerate pointm50.6.
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where un& is a eigenstate defined by Eq.~10!. ux̄1 ,p̄1& is a
wave packet with the least uncertainty12 (\51) and
ux̄1 ,p̄1 ,x̄2 ,p̄2&5ux̄1 ,p̄1& ^ ux̄2 ,p̄2&. The result clarifies the
property of the state further. It can be seen that as the pa
eter m approaches the degenerate pointm50.6, the visual
form of the sectionu^ x̄1 ,p̄1 ,x̄250,p̄252uN,m,l&u2, loses its
original character; asm increases further from the point, th
visual form recovers, as one can see by comparing the p
with m50.5 andm50.7.

This behavior can be explained qualitatively by perturb
tion theory. Supposingm is smaller than 0.6 and far enoug
from the degeneracy point,uN58,m,l50.02& can be ap-
proximately expressed by the following expansion:

u8,m,l50.02&5u8,m,l50&

1 (
NÞ8

l^N,m,l50uVu8,m,l50&
E8~m!2EN~m!

3uN,m,l50&.

Notice that the expression is not normalized. Asm ap-
proachesm50.6, different energy levels, such asE7(m),
E8(m), andE9(m), may draw nearer, therefore the denom
natorE8(m)2EN(m) becomes smaller and the perturbati
terms are amplified. Though the approximation by pertur
tion theory fails asm grows further, it seems likely that ther
exists a tendency that the perturbation is amplified gradu
and exceeds the termu8,m,l50& significantly, thus the char
acter of the original state is almost lost. Asm leaves the
degeneracy point,E8(m)2EN(m) becomes greater, an
u8,m,l50& regains the dominant position. This is quite sim
lar to the explanation for the property of classical reson
tori that is easily destructed.

III. NONPERIODICITY OF THE OBSERVABLES
AT THE DEGENERATE POINTS

In the previous section we have studied the propertie
quantum states, and now we tend to care about the temp
06621
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evolution of average values of observables. Here we cho
j151/A2(x11x2), p151/A2(p11p2) and monitor the tem-
poral behavior as follows:

^j1&~ t !5^N58,m,l850uexp[i (H01mU1lV)t]

3j1exp[2 i (H01mU1lV)t]

3uN58,m,l850& ~13!

and

^p1&~ t !5^N58,m,l850uexp[i (H01mU1lV)t]p1

3exp[2 i (H01mU1lV)t]

3uN58,m,l850&. ~14!

In the above expressions,m is an adjustable paramete
and it takes the same value in the quantum statesuN
58,m,l850& as well as in the operators exp[2i(H01mU
1lV)t]. It should be emphasized thatl8 in the quantum
states is fixed atl850, while l in the operators
exp[2i(H01mU1lV)t] is fixed atl50.02. The significance
of the expressions is that, the average value of observablj1
or p1 starts from an unperturbed state~i.e., l850), while it
is evolved by a temporal evolution operator with perturb
HamiltonianH5H0(m)1lV.

Now we estimate the temporal behavior of Eqs.~13! and
~14!. First, for Eq.~13!, in the interaction picture it can be
written as

^j1&~ t !5^N58,m,l850uexp[i (H01mU1lV)t]

3j1exp[2 i (H01mU1lV)t]

3uN58,m,l850&

5^N58,m,l850,I uexp[i (H01mU)t]

3j1
S exp[2 i (H01mU)t]

3uN58,m,l850,I &, ~15!
0-4
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FIG. 5. Trajectory of average values on th
phase planêj1&2^p1& for m50.5, 0.6, and 0.7,
respectively. In the cases away from the res
nance value, i.e.,m50.5,0.7, the motion is peri-
odic or quasiperiodic. In the resonant case,m
50.6, the motion is totally aperiodic.
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whereuN58,m,l850,I & is the corresponding quantum sta
of uN58,m,l850& in the interaction picture, satisfying

uN58,m,l850,I &5exp[i (H01mU)t]

3exp[2 i (H01mU1lV)t]

3uN58,m,l850&;

and exp[i(H01mU)t]j1
Sexp[2i(H01mU)t]5j1

I (t)5j1
H(t), j1

S

5j1 is the operator in the Schro¨dinger’s picture, andj1
I (t),

j1
H(t) are the operators in the interaction and the Heisenb

picture respectively. The evolution ofj1
H(t) or j1

I (t) is for-
mally identical to the classical case when the Hamiltonian
H5H01mU; thus we obtain

exp[i (H01mU)t] j1
S exp[2 i (H01mU)t]

5j1
S cos~ tA12m!1

p1
S

A12m
sin~ tA12m!.

~16!

Substituting Eq.~16! into Eq. ~15!, we get

^j1&~ t !5^N58,m,l850,I uexp[i (H01mU)t]

3j1
S exp[2 i (H01mU)t] uN58,m,l850,I &

5^N58,m,l850,I uj1
SuN58,m,l850,I &

3cos~ tA12m!1
1

A12m

3^N58,m,l850,I up1
SuN58,m,l850,I &

3sin~ tA12m!. ~17!

Notice that the coefficientŝN58,m,l850,I uj1
SuN58,m,l8

50,I & and 1/A12m^N58,m,l850,I up1
SuN58,m,l850,I &

are time dependent, therefore, in a sense, the temporal
06621
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lution of ^j1&(t) can be seen as a tuned sinusoidal wave. T
angular frequencyA12m of the average value is just th
angular frequency of classical motion whenl50.

Due to the complexity of the term^N58,m,l8
50,I uj1

SuN58,m,l850,I & and 1/A12m^N58,m,l8
50,I up1

SuN58,m,l850,I &, a numerical method needs to b
applied to see the behavior of the observables. Figur
shows the trajectories of the average values in the ph
plane^j1&2^p1&. Herem has been selected for three diffe
ent values: the first one ism50.5, smaller than the value
corresponding to the classical resonance case; the secon
is m50.6, which is just the resonance case as well as
degeneracy point for the quantum system; the third one
m50.7. It can be seen that form50.5 andm50.7, which are
away from the resonance value, the motion of the aver
values is periodic or at least quasiperiodic; however, at
point m50.6 the motion is obviously aperiodic.

In Fig. 6, we plot the logarithmic power spectra log10(Pr)
@2,9# to demonstrate the periodicity of^j1&(t). The definition
of Pr is

Pr~ f !5
P~ f !

min$P~ f !%
,

whereP( f ) is the fast Fourier transform of the time series
^j1&(t), f stands for the frequency, and min$P(f)% is the
minimum in the power spectrumP( f ).

In Fig. 6, it can be seen that form50.5 the spectrum is of
a periodic or quasiperiodic type. The relevant frequenc
observed in the spectrum areA12m/2p'0.113, which is
equal to the classical frequency ofj1(t), along with all the
multiples 2A12m/2p, 3A12m/2p, . . . ; A11m/2p
'0.195, which is the frequency of classical motion ofj2(t),
along with all the multiples 2A11m/2p, 3A11m/2p, . . . ;
apart from these frequencies, we can also observe the o
beat frequencies: A11m/2p2A12m/2p'0.0824,
2A12m/2p2A11m/2p'0.0302, A12m/2p1A11m/2p
'0.307 . . . . Theexistence of all the beat frequencies aris
a

e.,
for
een
FIG. 6. The logarithmic power spectr
log10(Pr) of ^j1&(t). For m50.5 andm50.7 the
spectra are of periodic or quasiperiodic type, i.
there only exist discrete peaks in the spectra;
m50.6, a series of resonant bands can be s
around the frequencies of classical motion.
0-5
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FIG. 7. A comparison between the classic
and the quantum-mechanical motion form50.6
and l50.06. The Poincare´ section of classical
chaotic motion is shown in~a!; the quantum mo-
tion of the trajectory in phase plane^j1&2^p1& is
shown in~b!. Power spectrum of classical chaot
motion ~c! and quantum motion~d! are also
shown. Chaoticlike spectrum of quantum motio
can be seen.
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from the nonlinearity in the expression of Eq.~17!; this prop-
erty is similar to that of nonlinear wave systems. Beyond
resonance point orm50.7, the property of the power spe
trum is quite similar to that ofm50.5, indicating that the
motion is also periodic or quasiperiodic.

Now we turn to the resonance casem50.6. The behavior
is totally different from the previous ones. Sinc
A12m/A11m5 1

2 , or 2A12m5A11m, we would expect
that the positions of the multiples ofA12m, A11m and
umA12m6nA11mu should overlap each other. Howeve
in the spectrum, we can see many frequencies around
multiples ofA12m. These multifrequencies with very sma
difference can be explained as the energy shifts or
avoided crossing due to the introduction of nonintegra
perturbation.

One can expect that, as the perturbation strengthl in-
creases, the energy-level shift becomes greater and the b
of frequencies around the multiples ofA12m/2p become
broader and overlap each other; the spectrum thus beco
chaoticlike one. In Fig. 7 we compare the power spectra
classical chaotic motion with the corresponding quant
case form50.6 andl50.06. As one can see, both spec
bear the same kind of structure. There are peaks at the
tiples of classical frequencies while there also exists no
like background, although in the spectrum of the quant
system, the number of noiselike peaks is fewer than in
classical system, which is probably due to the fact that
energy is not so high and chaos is suppressed by the qua
effect.
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IV. DISCUSSION AND CONCLUSION

In this paper, a quasi-integrable quantum system is es
lished and studied, the sensitivity behavior at the degener
points ~or the avoided crossing points of energy levels! is
demonstrated. We have seen that the quantum syste
highly sensitive at the degeneracy points.

According to the semiclassical approximation, for a tw
dimensional quasi-integrable system, the condition of non
ear resonance is@3#.

n1v11n2v25n1

]H0

]I 1
1n2

]H0

]I 2
50.

One can find that the above condition corresponds to
quantum energy-level degeneracy of the system, that i
say, the energy-level degeneracy is related to the reso
tori of classical motion. The unperturbed system we ha
discussed is a special case where the degeneracy corres
to the classical resonant tori directly without invoking sem
classical analysis. This provides us with a simple and stra
way to compare the classical and the quantum motion for
system. With this in our minds, we further studied the te
poral evolution of observed quantities. In accordance w
the sensitivity, we find that the observables evolve aperio
cally and chaoticlike behavior can be observed at the p
where degeneracy or avoided crossing happens. The tra
tion from regular to chaoticlike motion is likely through th
following process:

~1! Degeneracies take place;
0-6
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~2! as perturbation is added, a strong resonance oc
between the energy levels, the original degenerate freq
cies are split;

~3! as the perturbation is strengthened, the frequencies
split further, and different resonant bands of the frequenc
overlap, the spectrum becomes chaoticlike and so does
motion of the average value of observables.

We need to point out that since the expressions of
average value of observables are nonlinear, much nonli
behavior can be displayed in quantum systems; the beat
si-
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quencies we observe in the power spectra are just good
amples. The nonperiodicity at the degenerate points can
be attributed to the nonlinear effect.
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