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Sensitivity at the degenerate points of energy levels in a quantum system
with nonintegrable perturbation
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The behavior of quantum states and observables of a quasi-integrable quantum system is studied. Sensitivity
of the quantum states and nonperiodicity of the average value of observables at the degenerate points of energy
levels are observed. The behavior demonstrates the quantum properties corresponding to the classical resonant
tori with rational frequency ratio, where the global structure is easily destroyed by a small perturbation. Our
result is helpful for further understanding the avoided crossing in hard chaotic quantum systems.
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[. INTRODUCTION the sensitivity of the system. That is, the properties of the
system are more sensitive to external perturbation at these
In the study of quantum chaos, the behavior relevant tgoints. It can be seen, with semiclassical analysis, that the
energy levels, e.g., the different types of unfolded energyensitivity behavior corresponds to the destruction of classi-
spectra, the spectrum rigidity, etc., is usually considered agal resonant tori.
the criterion for regular and chaotic motign—3,8. More- Recently Xuet al. [3,4] has pointed out that overlaps of
over, the avoided crossing of energy levels is widely acMany avoided crossings at one point can be seen as a signa-
cepted as a signature of quantum chaotic motion, especiallggre of quantum chaotic motion, which is the quantum coun-
for hard chaotic systems. In these cases, if a certain para erpart of classical resonance overlaps. This shows that the

eter of the Hamiltonian is adjusted, the energy levels ma)pehawor of a quantum system at degeneracy points as well

vary accordingly: the most miraculous phenomenon is thatts avoided crossings can still be an important topic for fur-

with changing parameter, two energy levels may draW‘L'her study. Moreover, the phenomena similar to avoided

nearer, then repel each other, and separate further, as if th crossing can also be observed in the eigenvalue problems of

. . . . Sitferent wave systems that are beyond the scope of quantum
exists a hidden repelling force preventing the degenerac%ech(,:mics[6 57, Better understanding of the quantum-
from occurring. e

i . ) , mechanical case is also helpful for elucidating the common
It is well knowq that, qu'aS|—|ntegrabI@.e.', soft chaotit  -haracter in these systerf&-20].
systems behave intermediately between integrable and to- The present paper is organized as follows. In Sec. Il we
tally chaotic ones; a transition from regular to chaotic motionpropose a model system with the unperturbed Hamiltonian
can be observed in these SyStemS. ThUS, inVeStigation of thﬁsplay”']g energy degeneracies; it is shown that the degen_
transition process in such systems would be helpful for us t@racy points correspond to the classical resonance tori, and
understand the avoided crossing of energy levels in hard chare sensitive to perturbation. As a comparison, in Sec. lll, the
otic systems. trajectories of observables and their power spectra near the
The transition process can be described as the followingdegeneracy points are calculated. Section IV is a discussion,
For an originally integrable Hamiltonian system, degenerathe nonlinear effect in the observables is pointed out.
cies of energy levels can easily take place due to the sym-
metry of the system; as one of the parameters change, differ- Il. SENSITIVITY AT DEGENERATE POINTS
ent energy levels may intersect with each other, and the
intersecting points are just the degeneracy points of energy To investigate the behavior at the degeneracy points of
levels. If a nonintegrable perturbation is added to the systengnergy levels, we first need to adopt an integrable model in
the system symmetry is partly destroyed; as a result, some gfhich the intersection of different energy levels can be ob-
the degeneracy points are split, and the behavior similar t§erved explicitly. The unperturbed integrable Hamiltonian
that of avoided crossing can be observed. As the perturbatiofe consider is
strength increases further, the symmetry may be totally de-
stroyed and the degeneracy of energy levels becomes rare, Ho(x)=H%+uU=3(pf+xi+p5+x5)—uxiXs, (1)
which is rightfully the avoided crossing case.
From the above descriptions, one can infer that the behawhereH®=}(p7+ p5+ X3 +x3), is the Hamiltonian of a two-
ior of energy levels at degeneracy points is more crucial thadimensional(2D) harmonic oscillatorld = —x;X,, and w is
those at the other part of the energy spectra. We need tan adjustable parameter. Here we suppose that the mass of
point out that these degeneracy points are usually related wscillatorm, the angular frequency, and the Planck’s con-
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stant# are equal, i.e.m=w=%A=1. With this choice of
units, the classical and quantum-mechanical quantities be-
have at the same scale and can be easily compared. Integra-
bility of the model can be proved as follows. By taking

1 1
glzﬁ(xl+x2)a §2ZE(X1_X2)7 2
and
1 1
leﬁ(pﬁ'Pz), WZZE(pl_pZ): ©)

the above relation can be seen as a canonical transform and
&1, & mq, my represents the new variables of coordinates
and momenta. Hence we haWé,,m]=[&;,m]=i(h=1)

and the HamiltoniarHy(u) is transformed into

(4)

It can be easily seen that this is another 2D harmonic oscil-
lator, which is surely an integrable system. The expression of
energy levels can be obtained analytically:

Ho(p) =3[ w5+ (1— ) éX]+ [ ma+ (1+p) £3].

Emn=(m+3H)V1—p+(n+HV1+p,

m,n=0,1,2 ... . (5)

To demonstrate the sensitivity, we introduce a noninte-
grable perturbationV:
AV=N(x2x,— 1x3), (6)
which is the external perturbation of Hen-Heiles oscillator.

The strength of perturbation is determined by paramkter
hence the total Hamiltonian has the following form:

H=Hqy(u) +A\V=H%+ uU-+2\V. (7)

To perform the numerical calculation, the representation
of a 2D harmonic oscillator is adopted. The Hilbert space is
spanned by the eigenstates of the Hamiltonﬁﬁ?}z%(pi
+p3+x2+x3), which are

{Im,n)=|m)®|n);m,n=0,1,2 .. }. 8

|m,n),|m) and|n) are the eigenstates satisfying the follow-
ing equations:

HOm,n)=3(pi+x{+p3+x3)|m,n)=(m+n-+1)|m,n);
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9)
1(pI+x)Imy=(m+3)|m); (10)
1(p3+x5)|ny=(n+3)[n). (12)

The matrix elements of HamiltoniaH =Hy(u)+\V=H?°
+uU+\V can be calculated as the following:

FIG. 1. (a) Energy levels of Hamiltoniahl =Hg(u) +AV, vary-
ing with w for A=0. The crossings of energy levels can be ob-
served atu=0.6. (For the present and following figures, the units
of energy, length, and momentum are scaled by the relatisrw
=#=1.) (b) Energy levels varying withu for A\ =0.02, splitting of
the degenerate energy levels can be seegn=a0.6. (c) Amplified
aspect of(b) around the avoided crossing pointat 0.6, the en-
ergy levels are labeled b, Eg, andEg according to their posi-
tions in the spectrum.
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FIG. 2. Different structures of Poincasec-
tion before and after the perturbatia¥ is added
to the system. Discrete points {a) represent the
periodic motion while the connected points(ln)
represent the quasiperiodic motion.
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Hici:mn=(k,I|H|m,n) One may ask that, what is the corresponding quantum
T behavior? To show this, we compute the scalar product of
=(mM+n+1) 8 mdi.n+ u(k,1{U[m,n) eigenstates of perturbed and unperturbed systems|N)et
: Y
+ (K, 1| V]m,n). (12) denote theNth eigenstate of Hamiltoniakh®, and [N, u,\)

of the perturbed HamiltoniaH=Hy(u)+AV=H%+ uU
With th ve 1 I of h licit § f+>\v. The modulus of the product{N|N,z,\)|? can be
Ith the recursive formula of operators, the explicit form of o0 5q 5 description of similarity between the stdtg¢sand

the Iagt two terms of !Eq(12) can be. obtained easily. The N, u,\). Figure 3 shows this wittN=8, corresponding to
numerical calculation is performed in a truncated subspacg, eighth energy level in Fig.(d counted from the lowest

with 10X 15 bases, with which the result is accurate enougfbne. w varies continuously between 0 and 0.75. The solid
so long as\ is small(i.e., A <0.1). (Different numbers of the Iine’indicates)\:O the dashed liney = 0.02. It can be seen
bases are also tested to convince of the convergence. that. for\=0 |(NiN ,\)|? varies smoothly, while an ex-

Figure 1 shows the variation of energy levels of the sys-pIiCit gap appears around= 0.6 as a finite perturbationV

FeThWith“ forﬂi\_:g and ?.OfZ,trr]eslpectlively. Itdis notice(td thatdis added. Though the corresponding eigenvalue bears very
In the case ol =1, most ot the Ievels are degenerate andg a1 shift around the poink=0.6, the quantum state is

intersect, respectively, with each othe_r_ at the p"?"“* 0.6; changed dramatically as the perturbation is added.
however, wher\ =0.02, due to the addition of nonintegrable In Fig. 4 we plot the sectional quantum phase space, the

perturbation\V, th? dpgeneratg energy |¢VE|S are split ar_‘dsquared moduli of expansion coefficient of the stiie
bear the property similar to avoided crossing. Compared with

the split points, the remaining parts of the energy spectrum ,ﬁ,)\=0.02} by coherent stateEl],_thEt IS, [(X1,P1,%2

are relatively insensitive to the nonintegrable perturbation. =0.p2=2[N,x,\)?. The definition of|x,p;) is
Concerning the classical behavior of the system described S — N

by Eq.(4), one can see that the point=0.6 corresponds to |; 5>:e[—(1/2)|(?1+ip_1/\@)uz ((x1+|p1)/\/§) In)

a resonant case where the ratio of classical frequencies of "'t n Jn! '

two independent oscillators is

N| -

=
+
ES

This indicates that the motion of the system near the point
wu=0.6 is highly unstable and sensitive to small external per-% o4}
turbations according to the Poincadékhoff theorem. 3
Poincaresection can be applied to show this classical be- 2
havior clearly. We have randomly chosen ten groups of val-~*
ues of Kq,X;;p1,pp) satisfying the restrictiorH =Hq(u) ol
+AV=31—u+ 321+ u as the initial condition§The val- i
ues of parameters ape=0.6, A\=0.) The restriction corre- 1
; ; o. r=o002 !
sponds to the eighth energy level of the quantized system v
Figures 2a) and 2b) show the Poincarsections in phase '
planeé, — 7, before and after the perturbatiarV is added % o1 0z 03 o4 05 06 o7
to the system, respectively. Substantial difference can be ¥
seen between the two cases. Discrete points in Fa&y.d&2m- FIG. 3. |(N|N,u,\)|? as a function ofu, for N=8, gives the
onstrate periodic motion in contrast to the quasiperiodic mosolid line forA =0, and the dashed line far=0.02. An explicit gap

tion in Fig. Ab). can be seen around=0.6 as the perturbationV is added.

031
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p=0.5 1=0.57 1=0.58
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u=0.6

FIG. 4. Sectional quantum phase space of the
state|N=8,u,A=0.02, the visual form of the
section loses and then recovers its original char-
acter asu crosses the degenerate point0.6.

where|n) is a eigenstate defined by EQ.0). [x;,p;) is a
wave Bachet vv_ith_the Esait uncertaingy (A=1) and
[X1,P1,X2,P2)=|X1,P1)®|X5,p2). The result clarifies the

property of the state further. It can be seen that as the param-

eter u approaches the degenerate pqint 0.6, the visual
form of the section(x;,p;,X,=0,p,=2|N, ,\)|?, loses its

original character; ag increases further from the point, the
visual form recovers, as one can see by comparing the plots

with ©=0.5 andu=0.7.

evolution of average values of observables. Here we choose
£ =1N2(x,+X,), m=12(p,+ p,) and monitor the tem-
poral behavior as follows:

(£1)()=(N=8,u,\" =0|exp[i (Ho+ uU+AV)t]

X &rexp[—i(Hp+ uU+AV)t]

X|N=8,u,\"=0) (13

This behavior can be explained qualitatively by perturba- and

tion theory. Supposing is smaller than 0.6 and far enough

from the degeneracy poinfN=8,u,A=0.02 can be ap-
proximately expressed by the following expansion:

|8,1,A=0.02 =|8,u,\=0)
NN, u,A=0V|8,u,A=0
S (N,u V|8, )
N+#8 Eg(u) —En(u)
XN, u,\=0).

Notice that the expression is not normalized. Asap-
proachesu=0.6, different energy levels, such &(u),
Eg(u), andEg(w), may draw nearer, therefore the denomi-

nator Eg(u) — En(w) becomes smaller and the perturbation:
terms are amplified. Though the approximation by perturba;

tion theory fails age grows further, it seems likely that there

exists a tendency that the perturbation is amplified graduall

and exceeds the terf8,u,\ = 0) significantly, thus the char-
acter of the original state is almost lost. As leaves the
degeneracy pointEg(u)—En(n) becomes greater, and

(m)(1)=(N=8,u,\"=0|exp[i (Ho+ xU+AV)t] 7,

Xexp[—i(Hg+ puU+AV)t]

X|N=8,u,\"=0). (14)

In the above expressiong, is an adjustable parameter,
and it takes the same value in the quantum states
=8,u,\"=0) as well as in the operators expi(Hy+uU
+AWt]. It should be emphasized that' in the quantum
states is fixed atA’=0, while N in the operators
exp[—i(Ho+uU+AWV)1] is fixed atA =0.02. The significance
of the expressions is that, the average value of obsenéable
or 7, starts from an unperturbed stdtee., A’ =0), while it
is evolved by a temporal evolution operator with perturbed
HamiltonianH=Hg(®) +AV.

Now we estimate the temporal behavior of EGk3) and
Y14) First, for Eq.(13), in the interaction picture it can be
written as

(£1)()=(N=8,u,\"=0[exp[i(Ho+ nU+AV)t]

|8,u,A =0) regains the dominant position. This is quite simi-
lar to the explanation for the property of classical resonant
tori that is easily destructed.

IIl. NONPERIODICITY OF THE OBSERVABLES
AT THE DEGENERATE POINTS

In the previous section we have studied the properties of
guantum states, and now we tend to care about the temporal
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X &rexp[—i(Hg+ uU+A\V)t]
X|N=8,u,\"=0)

=(N=8,u,\"=0,|exp[i(Ho+ nU)t]
x &2 exp[—i(Ho+ nU)t]

X|N=8u,A"=0,), (15)
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u=05 u=07
0.05 0.05 FIG. 5. Trajectory of average values on the
o) c phase plang¢,)— () for ©=0.5, 0.6, and 0.7,
Ao Ao respectively. In the cases away from the reso-
e - nance value, i.e=0.5,0.7, the motion is peri-
~0.05 ~0.05 odic or quasiperiodic. In the resonant cage,
=0.6, the motion is totally aperiodic.
-0.2 -0.1 0 03 02 01 0 04  -02 0
<§, > (1) <§,>(1) <§y>(t)

where|N=8,u,\'=0,) is the corresponding quantum state lution of (£;)(t) can be seen as a tuned sinusoidal wave. The
of IN=8,u,\"=0) in the interaction picture, satisfying angular frequency/1—pu of the average value is just the
angular frequency of classical motion wher=0.

IN=8,u,\"=0,])=expli(Ho+ nU)t] Due to the complexity of the term(N=8u,\’

x exp[—i(Ho+ mU +AV)t] =0/J|&IN=8u,\"=0J) and  1KW1—pu(N=8u,\’
, =0,l|wIN=8,u,\"=0,), a numerical method needs to be
X|N=8,u,\"=0); applied to see the behavior of the observables. Figure 5

, _ _ s shows the trajectories of the average values in the phase
and expi(Ho+pU)]&rexpl—i(Hot+ L) =&O=E'1), & plane(&,)— (). Hereu has been selected for three differ-

e : e e i |
_Hfl is the operator in the Schdmger's picture, andy(t),  ent values: the first one ig=0.5, smaller than the value
&1 (t) are the operators in the interaction and the Heisenbergorresponding to the classical resonance case; the second one

picture respectively. The evolution &f (t) or £(t) is for-  js 4 =0.6, which is just the resonance case as well as the
mally identical to the classical case when the Hamiltonian isjegeneracy point for the quantum system; the third one is
H=H,+unU; thus we obtain w=0.7. It can be seen that fer=0.5 andu=0.7, which are
] s _ away from the resonance value, the motion of the average
expli(Ho+ nU)t] €7 exp[—i(Ho+ nU)t] values is periodic or at least quasiperiodic; however, at the
s point ©=0.6 the motion is obviously aperiodic.
s ™ In Fig. 6, we plot the logarithmic power spectra Jgd,)
=¢rcogtyl—pu)+ sin(tyl—puw). - r
frcod #) Vi—pu A #) [2,9] to demonstrate the periodicity 0f,)(t). The definition
(16) of P, is
I . P(f)
Substituting Eq(16) into Eq. (15), we get P (f)= ———
' min{P(f)}’
(£1)()=(N=8,u,\"=0,l[exp[i (Ho+ nU)t] , _ , _
< . whereP(f) is the fast Fourier transform of the time series of
X érexp[—i(Ho+ uU)t][N=8u,\"=0]) (&)(1), f stands for the frequency, and Hi{f)} is the

minimum in the power spectrurA(f).
In Fig. 6, it can be seen that far=0.5 the spectrum is of
a periodic or quasiperiodic type. The relevant frequencies

=(N=8,u,\"=0l|£|N=8u,\"=0])

xXcoqtyl—p)+ observed in the spectrum akél — u/27~0.113, which is
Vi-u equal to the classical frequency &f(t), along with all the

_ ' SIN — ' multiples  2y1—w/27, 3Jy1—wl2m, ...; 1+uwpl2w
X(N=8u, A" =0J[mIN=8,1"=01) ~0.195, which is the frequency of classical motionégft),
X sin(tyl—pw). (17)  along with all the multiples 21+ w/2m, 31+ u/2m, .. .;

apart from these frequencies, we can also observe the other
Notice that the coefficientéN=8,u,\"=01|£JN=8u,\"  beat frequencies: 1+ u/27m—J1— u/27~0.0824,
=0J) and 1A1—u(N=8u,\"=0J|m5|N=8u,\"=0J) 21— u/2m— 1+ u/2w~0.0302, V1— u/2m+ 1+ ul2m

are time dependent, therefore, in a sense, the temporal eve-0.307 . . . . Theexistence of all the beat frequencies arises
n=05 u=0.6 n=07

12 12

8 . .

10 10 FIG. 6. The logarithmic power spectra
~ 8 ~ 8 ~6 logyo( P,) of (£1)(t). For u=0.5 andu=0.7 the
Se L6 < spectra are of periodic or quasiperiodic type, i.e.,
g, g, g* there only exist discrete peaks in the spectra; for

2 n=0.6, a series of resonant bands can be seen

2 2 around the frequencies of classical motion.

o0 0.2 0.4 00 0.2 0.4 00 0.2 0.4
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FIG. 7. A comparison between the classical
-0.3 and the quantum-mechanical motion fer=0.6
1 —05 0 and \=0.06. The Poincareection of classical
<t,> chaotic motion is shown if@); the quantum mo-
tion of the trajectory in phase plafé;) — (1) is
(@ shown in(b). Power spectrum of classical chaotic
10 motion (c) and quantum motion(d) are also
shown. Chaoticlike spectrum of quantum motion
8 can be seen.
a-6
T
2 4
2
0

from the nonlinearity in the expression of Ed7); this prop- IV. DISCUSSION AND CONCLUSION
erty is similar to that of nonlinear wave systems. Beyond the
resonance point on=0.7, the property of the power spec-

trum |s_qU|te 5|m|I_ar _to that oﬁ_L:O_.S,_mdlcatmg that the points (or the avoided crossing points of energy leyets

motion is also periodic or quasiperiodic. ~ demonstrated. We have seen that the quantum system is
Now we turn to the resonance cage=0.6. The behavior  pighly sensitive at the degeneracy points.

is totally different from the previous ones. Since  According to the semiclassical approximation, for a two-

VI—p/1+p=1%, or 21— u=1+pu, we would expect dimensional quasi-integrable system, the condition of nonlin-

that the positions of the multiples of1—u, V1+u and  ear resonance iS].

|[my1l—pu=ny1l+ x| should overlap each other. However,

in the spectrum, we can see many frequencies around the JHO JHO

multiples of /1 — . These multifrequencies with very small Nyw;+Nywy= M- + N2 = 0.

difference can be explained as the energy shifts or the ! 2

avoided crossing due to the introduction of nonintegrable _ N
perturbation. One can find that the above condition corresponds to the

One can expect that, as the perturbation strengin- quantum energy-level degeneracy'of the system, that is to
creases, the energy-level shift becomes greater and the bartfy” the energy-level degeneracy is related to the resonant

. . — tori of classical motion. The unperturbed system we have
of frequencies around the multiples qfl = u/2m become discussed is a special case where the degeneracy corresponds

broad.er. and overlap.each other; the spectrum thus becomE&he classical resonant tori directly without invoking semi-
chaot_lchke one. In F|g. 7 we compare the power Spectra of|,ssical analysis. This provides us with a simple and straight
classical chaotic motion with the corresponding quantumyay to compare the classical and the quantum motion for the
case foru=0.6 and\=0.06. As one can see, both spectragysiem. With this in our minds, we further studied the tem-
bear the same kind of structure. There are peaks at the MYpral evolution of observed quantities. In accordance with
tiples of classical frequencies while there also exists noiseme sensitivity, we find that the observables evolve aperiodi-
like background, although in the spectrum of the quantuntally and chaoticlike behavior can be observed at the point
system, the number of noiselike peaks is fewer than in thgvhere degeneracy or avoided crossing happens. The transi-
classical system, which is probably due to the fact that theion from regular to chaoticlike motion is likely through the
energy is not so high and chaos is suppressed by the quantuailowing process:

effect. (1) Degeneracies take place;

In this paper, a quasi-integrable quantum system is estab-
lished and studied, the sensitivity behavior at the degeneratcy
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(2) as perturbation is added, a strong resonance occurgiencies we observe in the power spectra are just good ex-
between the energy levels, the original degenerate frequemmples. The nonperiodicity at the degenerate points can also
cies are split; be attributed to the nonlinear effect.

(3) as the perturbation is strengthened, the frequencies are
split further, and different resonant bands of the frequencies
overlap, the spectrum becomes chaoticlike and so does the ACKNOWLEDGMENTS
motion of the average value of observables.

We need to point out that since the expressions of the This work was supported by the National Natural Science
average value of observables are nonlinear, much nonline&oundation of China under Grant No. 19975006, the Special
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